ESE-905 Analytical and Numerical Techniques in Heat Transfer

Course Objectives

- 1. The course is designed to achieve the following objectives
 - a. To develop a strong physical and conceptual understanding of heat transfer processes.
 - b. Apply scientific and engineering principles to analyze and design thermosfluid aspects of engineering systems.
 - c. Use appropriate analytical and computational tools to investigate heat and mass transport phenomena of different geometries.
 - d. Thermal design; recognize the broad technological context of heat transfer, especially related to energy technology.
 - e. To apply the associated heat transfer theories to simple engineering cases, with focuses on modeling establishment and problem closures.

Course Contents

2. Contents with suggested contact hours

No.	Topics	Contact	
		Hours	
a.	Steady State Heat Conduction		
	 One-Dimensional Steady State Conduction 		
	 1-D Steady State Conduction without generation 		
	 1-D Steady State Conduction without generation 		
	 Numerical Solution to Steady State 1-D 		
	Conduction by using EES and Matlab		
	 Analytical and Numerical Solutions for 	10	
	constant/non-constant cross-section Extended		
	Surfaces		
	 2-D Steady State Conduction 		
	 Analytical and Numerical Solution to Steady State 		
	Heat Conduction Problems with EES and Matlab		
	Finite Element Solution		
b.	Transient Conduction	6	
	Analytical Solutions to 0-D Transient	0	

	Conduction		
	 Numerical Solutions to 0-D Transient 		
	Conduction		
	Semi-Infinite 1-D Transient Conduction		
	Laplace Transform		
	Separation of Variables for Transient Problems		
	 Analytical Solutions to 1-D Transient 		
	Conduction		
	 Numerical Solutions to 1-D Transient 		
	Conduction		
External Forced Convention			
	Laminar Boundary Layers		
	Boundary Layer Equations		
	Dimensional Analysis in Convection		
	Turbulent Boundary Layer		
C.	Reynolds Averaged Equation	6	
	Laws of Walls		
	Analytical Solutions to External Forced		
	Convention		
	 Numerical Solutions to External Forced 		
	Convention		
	Internal Forced Convention		
	Internal flow Concept		
٦	Internal Flow Correlation	C	
a.	Energy Balance	0	
	Analytical Solution for Internal flows		
	Numerical Solution for Internal flows		
	Natural Convention		
	Natural Convention Concept		
e.	Correlations for Natural Convention	4	
	Analytical Solution for Natural Convention		
	Numerical Solution for Natural Convention		

	Boiling and Condensation	
	Pool Boiling	
	Flow Boing	
f.	Film Condensation	6
	Analytical Solution for Boiling and Condensation	
	Numerical Solution for Boiling and	
	Condensation	
	Heat exchangers	
	Heat Exchangers	
	Logarithmic Mean Temperature Difference	
	Effectiveness NTU	
g.	Pinch Point Analysis	7
	Numerical Model of Parallel, Counter and Cross	
	Flow Heat Exchanger	
	Plate Type Heat Exchanger	
	Regenerators	
	Radiation Heat Transfer	
	Radiation	
h	Emission of Radiation by a Blackbody	
n.	Radiation Characteristics of real surfaces	
	Radiation with heat transfer mechanism	
	Monte Carlo Method	

<u>Outcomes</u>

3. This course is designed to introduce the students with phenomena of advanced heat and mass transfer, to develop methodologies for solving a wide variety of practical thermal engineering problems, and to provide useful information concerning the performance and design of particular systems and processes. A knowledge-based design problem requiring the formulations of solid conduction and fluid convection and the technique of numerical computation progressively elucidated in different chapters will be assigned and studied in detail.

4. Recommended Reading (including Textbooks and Reference books).

S.	Title	Author(s)	Remarks
No.			
a.	Heat Transfer	Gregory Nellis, Stanfered	Text
		Klein	
b.	Heat and Mass	Yunus A. Çengel	Reference
	Transfer		
	A practical approach		
C.	Advanced Heat and	Amir Faghri, Yuwen	Reference
	Mass Transfer	Zhang, John Howell	
d.	Computational	Pradip Majumdar, Pradip	Reference
	Methods for Heat and	Majumdar	
	Mass Transfer		
e.	Heat Exchangers:	Sadik Kakaç, Hongtan Liu	Reference
	Selection, Rating, and		
	Thermal Design,		
f.	Engineering Heat	William S. Janna	Reference
	Transfer		
g.	Transient Heat	Annaratone, Donatello	Reference
	Transfer		